Complex Metal-Nicotine Compounds

By CLAUDE R. SMITH RECEIVED JULY 30, 1952

This work is a continuation of the efforts of this Laboratory to prepare a large number of derivatives and compounds of nicotine.^{1,2} In one pre-

vious publication³ 25 complex salts of nicotine, some involving acid dyes, were listed but not described. In another⁴ the author described the preparation of 11 double sulfates. The present paper covers the preparation of 76 complex metal-nicotine compounds of two types—double salts and nicotinammino compounds.

TABLE I

			Ţ.	THIOCYANA'	TES	
No.	Compounda	Nicot Calcd.	ine, % Found	-CN Caled.	S, % Found	Crystals
1	ZnA2·RN2·HA	40.2	40.2	43.2	42.9	Dimorphic, irregular or prisms
2	CdA ₂ ·2(RN ₂ ·HA)	48.3	48.3	34.6	34.6	Irregular leaves
3	CdA2·2RN2	58.6	59.7	21.0	21.3	Prisms (tricl.), often in rosettes
4	$CoA_2 \cdot 2(RN_2 \cdot HA)$	52.5	52.5	37.6	37.7	Red prisms (tricl.)
5	$NiA_2 \cdot 2(RN_2 \cdot HA)$	52.5	52.4	37.6	37.1	Blue-green prisms (tricl.)
6	NiA2·3RN2	73.5	72.3	17.6	17.2	Brown, irregular
7	$MnA_2 \cdot 2(RN_2 \cdot HA)$	52.8	52.1	37.9	36.9	Prisms
8	FeA2·2(RN2·HA)	52.8	52.4	37.8	37.7	Yellow prisms (tricl.)
9	3AgA·RN ₂ ·HA	22.5	22.6	$(8.0)^{b}$	$(8.0)^{b}$	Pink prismatic needles, m.p. 130-131°
10°	CuA2·2(RN2·HA)	52.1	50.0			Irregular green
11°	CuA·RN ₂ ·HA	47.3	47.2	• •	• •	Irregular yellow
12°	CuA·RN ₂	57.1	55.6	••		Rod-like prisms
13 ^d	CrA ₃ ·1.3(RN ₂)·4H ₂ O	41.4	40.8	34.2	34 .0	Purple, irregular
				Piperidine,	%	
14	$CoA_2 \cdot 2(C_5H_{11}N \cdot HA)$	36.7	37 .2	50.1	50.0	Deep-blue prisms

 a A = -CNS; RN₂ = $C_{10}H_{14}N_2$. b Refers to -CNS combined with nicotine, determined by warming the compound in water acidified with nitric acid, cooling, and titrating. c No. 10, 11 and 12: calcd., Cu 10.2, 18.5 and 22.9, respectively; found, Cu, 10.9, 18.4 and 22.5, respectively. d Calcd., Cr, 10.2; found, Cr, 9.9.

TABLE II

ystals
risms
ms
tes, irregular
r

TABLE III

			Pick	ATES				
No.	Compound	Nicot Calcd.	ine, % Found	Picric Calcd.	acid, % Found	H ₂ O, % Calcd.	Loss at 15 min.	110°, % 30 min.
1	CoA2·2RN2·5H2O	34.9	34.9	48.9	48.3	9.7	9.8	9.8
2	NiA2.2RN2.6H2O	34.3	34.1	48.4	48.9	11.4	11.4	11.4
3	CdA2·2RN2·6H2O	32.4	32.4	45.8	46.1	10.8	7.6	7.9
4	MgA ₂ ·2RN ₂ ·6H ₂ O	35.5	35.4	50.2	51.1	11.8	11.5	12.7
5	MnA2·2RN2·4H2O	35.7	35.7	50.5	51.1	7.3	7.3	7.9
6	ZnA2·2RN2	38.3	38.3	54.2	54.7	• •		
7	AlA: 3RN2	40.6	40.5	57.4	57.8	••	• •	• •
8	FeA. 3RN.	39.7	39.7	56.0	56.2	••		
9	AgA·RN ₂	32.6	33.3	46.0	45.8		• •	
10 ^b	CuA2.2(RN2.HA)	24.9	25.2	••	• •	• • • • •	• •	••
11	$ZnA_2 \cdot 2(RN_2 \cdot HA)$	24.8	24.3					
12°	AgA.2(RNo.HA)	29.0	29.1			•••	• •	

 $^{6}A = -OC_{6}H_{2}(NO_{2})_{3}; RN_{2} = C_{10}H_{14}N_{2}.$ 5 Calcd., Cu, 4.9; found, Cu, 5.1. 6 Calcd., Ag, 9.6; found, Ag, 9.0.

 a A = $-OOC(C_{6}H_{4})OH-o$; RN₂ = $C_{10}H_{14}N_{2}$.

(2) C. F. Woodward, C. O. Badgett and J. J. Willaman, Ind. Eng. Chem., 36, 540, 544 (1944); U. S. Dept. Agric. E-725 (processed) (1947); Arch. Biochem., 29, 241 (1950). Double salts result from the combination of the metal and the nicotine salts of the same selected acid. Ammino compounds result when nicotine

C. F. Woodward, A. Eisner and P. G. Haines, This JOURNAL, 66,
 11 (1944); P. G. Haines, A. Eisner and C. F. Woodward, ibid., 67,
 1258 (1945); P. G. Haines and A. Eisner, ibid., 72, 4618, 1719 (1950).
 C. F. Woodward, C. O. Badgett and J. J. Willaman, Ind. Eng.

⁽³⁾ C. R. Smith, U. S. Dept. Agric. E-646 (processed) (1945).

⁽⁴⁾ C. R. Smith, THIS JOURNAL, 71, 2844 (1949).

TABLE IV

o-Benzoylbenzoates

No.	Compounda	Nicotine Calcd.	e, % Found	HA, Caled.	% Found	H ₂ O, % Calcd.	Loss at 1 15 min.	10°, % 30 min.
1	CoA ₂ ·2RN ₂ ·6H ₂ O	34.5	34.4	48.0	48.5	11.4	9.9	10.6
2	NiA2·2RN2·6H2O	34.5	34.3	48.1	47.8	11.4	10.1	10.1
3	MnA2·2RN2·6H2O	34.6	34.5	48.2	48.6	11.5	9.7	11.0
4	CdA2.2RN2:6H2O	32.5	32.6	45.4	45.2	10.8	10.0	10.6
5	$ZnA_2 \cdot 2RN_2 \cdot 6H_2O$	34.2	34.0	47.7	48.3	11.4	8.8	9.9
6	$MgA_2 \cdot 2RN_2 \cdot 6H_2O$	35.8	35.9	49.9	49.8	11.9	11.8	13.6
7	$FeA_2 \cdot 2RN_2 \cdot 6H_2O$	34.6	34.4	48.2	48.4	11.5	9.4	9.9
8 ^b	CuA ₂ ·2RN ₂ ·5H ₂ O	35.0	35.0	• •		9.7	9.3	9.4
9^b	CuA ₂ ·2RN ₂ ·2C ₂ H ₅ OH	34.8	34.8	••		$(9.9)^{c}$	9.6	10.5
10^d	$(AgA)_2 \cdot RN_2$	19.6	20.6	• • • •	* • • • • • • • • • • • • • • • • • • •	••	• •	••
116	CuA ₂ ·2(RN ₂ ·HA)	25 .0	24.2			: :•::::::::::::::::::::::::::::::::::		

 a A = OOC·C₆H₄(OC·C₆H₅)- ρ ; RN₂ = C₁₀H₁₄N₂. b No. 8, 9 and 12: calcd., Cu, 6.8, 6.8 and 4.8, respectively; found, Cu. 6.8, 6.8 and 4.6. respectively. c Ethanol. d Calcd., Ag, 26.1; found, Ag, 26.0.

TABLE V

p-Nitrobenzoates

No.	Compound ^a	Nicotine, % Caled. Found	HA, % Found	H ₂ O, % Calcd.	Loss at 110°, % 15 min. 30 min.
1	CoA2·2RN2·4H2O	41.1 40.7	42.4 42.6	9.1	8.2 8.2
2	CdA2·2RN2·4H2O	38.5 38.3	39.7 39.7	8.6	9.1 9.3
. 3	$MnA_2 \cdot 2RN_2 \cdot 4H_2O$	41.4 40.9	42.6 42.9	9.2	9.1 10.9
4	CuA2·2RN2·2H2O	42.8 42.9	44.2 44.5	4.8	4.8 4.8
5	NiA ₂ ·2RN ₂ ·2H ₂ O	43.1 42.0	44.5 44.8	4.7	4.1 4.1
6 ^b	CuA2·2RN2·4HA	23.4 23.3			

 a A = -OCC·C₆H₄·NO-p; RN₂ = C₁₀H₁₄N₂. b No. 7: calcd., Cu, 4.6; found, Cu, 4.6.

TABLE VI

DIBASIC ACIDS

		Base.	. %	Coppe	er. %	
No.	Compound ^a	Calcd.	Found	Calcd.	Found	Crystals
1^b	$CuC_2O_4 \cdot Na_2C_2O_4 \cdot 2H_2O$			19.8	19.6	Blue prismatic needles
2	$CuC_2O_4 \cdot RN_2 \cdot H_2C_2O_4$	40.1	39.3	15.7	15.7	Blue prisms (moncl.)
3	$CuC_2O_4 \cdot RN_2 \cdot H_2C_2O_4 \cdot H_2O$	38.4	38.7	14.9	14.8	Prisms, round ends
4°	$2\text{CoC}_2\text{O}_4\cdot\text{RN}_2\cdot\text{H}_2\text{C}_2\text{O}_4\cdot5\text{H}_2\text{O}$	25.5	24.7		••	
5^d	$2ZnC_2O_4\cdot RN_2\cdot H_2C_2O_4\cdot 5H_2O$	25.5	25 .0	• •		
6	CuPhth·RN2·H2Phth·H2O	28.3	28.2	11.1	11.1	Green, irreg.
7	CuPhth·2HN ₃	13.0	12.9	24.3	24.2	Blue prisms (tetrag.)
8	CuCr ₂ O ₇ ·2RN ₂ ·H ₂ Cr ₂ O ₇	39.5	39.3	7.7	7.6	Brown to orange, irreg.
9	CdCr ₂ O ₇ ·2RN ₂ ·H ₂ Cr ₂ O ₇	37.2	36.0	••••	••	Salmon to brown
10	Cu(OOC·CH ₂) ₂ ·RN ₂	47.4	42.9	19.6	18.0	Green cubes
11	Cu(OOC·CH ₂) ₂ ·2NH ₃ ·2H ₂ O	13.6	13.9	25.4	25.3	Purple prisms (tricl.)
12	Cu(OOC·CH ₂) ₂ ·2NH ₃	15.9	15.5	29.7	29.3	Blue prisms (tetrag.)
13	Cu(OOC=CH) ₂ ·2RN ₂ ·10H ₂ O	47.5	47.3	9.3	9.3	Blue prisms (tricl.)
14*	$ZnC_2O_4 \cdot NH_2 \cdot 3H_2O$	7.6	7.2			White prisms

** RN₂ = $C_{10}H_{14}N_2$; Phth = $-(OOC)_2C_6H_4$ -o.
** Calcd.: $H_2C_2O_4$, 78.4; H_2O , 24.0. Found: $H_2C_2O_4$, 79.0; H_2O loss at 110°, 22.6.
** Calcd.: $H_2C_2O_4$, 42.5; H_2O , 14.1. Found: $H_2C_2O_4$, 42.8; H_2O loss at 110°, 13.7.
** Calcd.: $H_2C_2O_4$, 42.5; H_2O loss at 110°, 14.0.
** Calcd.: $H_2C_2O_4$, 39.2; H_2O , 24.0. Found: $H_2C_2O_4$, 39.0; H_2O loss at 110°, 22.6.

alkaloid reacts with a metal salt of the selected acid. The metals which made double salts were Ag, Cd, Co, Cu (-ous and -ic), Fe (-ous and -ic), Mn (-ous) and Ni (-ous). All of these, plus Al, Cr and Mg, formed ammino compounds. The acids successfully incorporated into double salts were benzoic, o-benzoylbenzoic, p-nitrobenzoic, chromic, hydrocyanic, oxalic, phthalic, picric, salicylic and thiocyanic. Those in ammino compounds were benzoic, o-benzoylbenzoic, p-nitrobenzoic, ferrocyanic, fumaric (but not maleic), hydrobromic, hydriodic, α-naphthoic, phthalic, picric, succinic and thiocyanic.

Univalent cations combined with univalent anions added only 1 mole of base, forming a mononicotinammino product. Bivalent cations combined

with univalent anions formed dinicotinammines, and trivalent cations combined with univalent

TABLE VII

BENZOATES AND NAPHTHOATE

		Nicot	ine. %	Meta	al, %	
No.	Compounda	Calcd.	Found	Calcd.	Found	Crystals
1	CuA2.2(RN2.HA)	37.1	35.9	7.3	7.5	Blue prisms
2	CuA2.2RN2.2H2O	48.7	48.6	9.6	9.8	Blue prisms
3	CuA ₂ -RN ₂	34.4	34.0	13.6	13.4	Green hex.
4	CoA2.2(RN2.HA)b	37.3	35.6			-
5	NiA22(RN2·HA)c	37.3	33.4	•••		
6	ZnA2·RN2·HA	27.3	27.4	• •		
7	CdA2·2RN2	47.7	46.2		••	Plates
8	CuN2-2RN2d	44.4	44.4	8.7	8.8	
			_ ~	TT 3.T	1 A -	1-1 0 11

 a A = -OOC·C₆H₅; RN₂ = C₁₀H₁₄N₂. b Calcd., C₆H₅CO₂H, 56.1; found, C₆H₅CO₂H, 53.4. c Calcd., C₆H₅CO₂H, 56.2; found, C₆H₅CO₂H, 54.3. d N = -OOCC₁₀H₇-α.

TABLE VIII

HALIDES, CYANIDES AND FERROCYANIDES

		Nicotine, %		Copt	oer. %		
No.	Compound ^a	Calcd.	Found	Calcd.	er, % Found	Crystals	
1	2CuCN·RN₂·HCN	44.0	43.0	34.5	34.2	Prisms (tricl.)	
2	CuI·RN ₂	46.0	43.2			Hydrous, irregular	
3,	Ag ₂ ·RN ₂ ·H ₂ FeCv ₆ 2H ₂ O	25.9	25.9			,,	

^a RN₂ = $C_{10}H_{14}N_2$. ^b Calcd., Ag, 34.2; found, Ag, 34.8.

anions formed trinicotinammines; nickelous trinicotinammino thiocyanate was an exception. Bivalent cations (principally limited to copper) combined with bivalent anions usually added 2 moles of ammonia or 1 mole of nicotine; the nicotine double salts usually contained only 1 mole of nicotine, but cupric dinicotine dichromate was an exception. The author prepared only two trinicotinammines of trivalent cations—the trinicotinammino picrates of aluminum and iron. Bivalent cations were often associated with 2 moles of nicotine and up to 6 moles of water.

In general, both types of salts were well crystallized, highly water-insoluble compounds of definite and repeatable composition. Many of them contained definite amounts of water of crystallization; in others this was indefinite or fluctuating. Usually they could be prepared by mixing normal solutions of the required salts in water or in water-ethanol, using the acetates of the desired metals and the sodium or ammonium salts of the desired anions. Manipulations had to be juggled in some cases to

avoid the formation of metal hydroxides, or to produce the latter in finely dispersed and reactive form. Sometimes one listed compound was prepared from another, as in Table VI, no. 3 from no. 2; and in Table VII, 3 from 2. Usually the crystals formed immediately, sometimes after a few days at room temperature.

Many of the compounds fluoresced. Some of these were cuprous nicotine thiocyanate (Table I), the cadmium salts of nicotine salicylate (Table II) and thiocyanate, and the zinc salts of nicotine thiocyanate, salicylate and benzoate (Table VII).

In the tables, RN₂ is used as an abbreviation for nicotine, $C_{10}H_{14}N_2$, where R represents $C_{10}H_{14}$, obviously not a definite radical, and N₂ indicates possible chelation of two nitrogens.

EASTERN REGIONAL RESEARCH LABORATORY⁵ PHILADELPHIA 18, PENNA.

⁽⁵⁾ One of the laboratories of the Bureau of Agricultural and Industrial Chemistry, Agricultural Research Administration, United States Department of Agriculture. Article not copyrighted.